

Law of Mass Conservation

2018.11.27 CHO Yurim

Pusan National University
Dept. of Naval Architecture and Ocean Engineering / RES1
E-mail: yusung49@naver.com

CONTENTS

1. Material Change

- Physical Change
- Chemical change

2. Law of Mass Conservation

- History
- Definition
- Formulation

1 MATERIAL CHANGE - 물질변화

■ Physical Change - 물리변화

- 물질에서 일어나는 물리적 상태의 변화
 - 물질 본래의 성질을 잃지 않고, 모양이나 상태만 변화하는 현상
 - 성질이 변하지 않았다는 건 <u>분자가 깨지지 않는</u> (화학적인 조성의 변화 없이) 변화(에너지를 얻거나 잃어 그 상태만 변화하는 현상)
 - 상태의 변화: 고체-액체-기체로 변하는 상태 모양의 변화: 유리잔이 깨지는 것처럼 모양만 변화 용해, 확산: 소금이 물에 녹거나, 향수의 향이 멀리 퍼지는 현상

■ Chemical Change - 화학변화

- 물질이 그 자신 또는 다른 물질과 상호 작용을 일으켜 새로운 물질로 바뀜.
 - 물질이 본래의 성질을 잃어버리고 새로운 성질의 물질로 변화하는 현상
 - 성질이 변한다는 건 원자의 배열이 바뀌어 <u>새로운 분자가 되는</u> (에너지를 받아 분해되거나 재결합) 변화 (결과 물질의 화학적 성질이 달라짐)
 - 연소, 침전 등의 화학반응

History

- Philosophy
 - Nothing comes from nothing, so that what exists now has always existed.
 - Empedocles(그리스 철학자, BC 495~444, 이탈리아), B.C 4C
 - The totality of things was always such as it is now, and always will be.
 - Epicurus(그리스 철학자, BC 341~270, 그리스), B.C 3C

- The universe and its constituents such as matter cannot be destroyed or created.
 - Jainism, Mahavira (자이나교 철학, 창시자, BC 599~527, 인도), B.C 6C
- A substance is permanent, but its modes are characterized by creation and destruction.
 - Jainism Text Tattcartha sutra (자이나교 경전), 2C
- A body of matter cannot disappear completely. It only changes its form, condition, composition, color and other properties and turns into a different complex or elementary matter.
 - Nasīr al-Dīn al-Tūsī (박식가-polymath, 1201~1274, 이라크), 13C

History

- Antoine-Laurent de Lavoisier (1743~1794, 프랑스)
 - 프랑스의 화학자. 근대 화학의 아버지.

History

- Discoveries Background for the Law of Mass Conservation
 - Phlogiston
 - 타는 원소, 가상의 물질
 - 연소 반응 설명을 위해 만들어진 이론
 - → 주석 가루 연소 실험으로 질량 보존 법칙 발견

라부아지에의 실험 장치

• 물의 실험

- 분해 실험 : 긴 주철관을 벽화로 속으로 통과. 관을 통과하면서 분해된 산소는 주철관의 철과 결합. 냉각수를 통과한 나머지 성분들로부터 수소 기체를 얻음.
- 합성 실험 : 물의 분해 장치를 통해 얻은 수소와 다른 방법(나무)으로 얻은 산소 섞어 혼합. 전기 불꽃 장치로 폭발시켜 물을 얻음.
- → 물은 산소와 수소로 나뉘므로 물이 원소라고 한 아리스토텔레스의 4원 소설은 옳지 않다

Law of Mass Conservation

Definition

- The law of conservation of mass states that mass in an isolated system is neither created nor destroyed by chemical reactions or physical transformations.
- According to the law of conservation of mass, the mass of the products in a chemical reaction must equal the mass of the reactants.
- The law of conservation of mass is useful for a number of calculations and can be used to solve for unknown masses, such the amount of gas consumed or produced during a reaction

Combustion reaction of methane.

Where 4 atoms of hydrogen, 4 atoms of oxygen and 1 of carbon are present before and after the reaction. The total mass after the reaction is the same as before the reaction.

Formulation

○ isolated system 에서 mass conservation

$$m_{sys}=constant,$$
 $\frac{dm_{sys}}{dt}=0$ (1) $\dot{m}_{in}-\dot{m}_{out}=\frac{dm_{cv}}{dt}$ (in control volume) (2)

○ 유체의 흐름에 적용

$$\rho v \times dA \cos \theta = \rho dA \vec{v} \vec{n} \cos \theta = \rho (\vec{v} \circ \vec{n}) dA$$
 : 미소 면적의 질량 유출 속도 (4)

Formulation

○ 유체의 흐름에 적용

$$\rho v \times dA \cos \theta = \rho dA \vec{v} \vec{n} \cos \theta = \rho (\vec{v} \circ \vec{n}) dA$$
 : 미소 면적의 질량 유출 속도 (4)

$$\int_{\mathbf{c}} \rho(\vec{v} \circ \vec{n}) dA$$
 : 질량의 순 유출량 (5)

$$\frac{\partial}{\partial t} \int_{V} \rho dV$$
 : 질량 축적속도 (6)

$$\int_{S} \rho(\vec{v} \circ \vec{n}) dA + \frac{\partial}{\partial t} \int_{V} \rho dV = 0 \quad (7)$$

